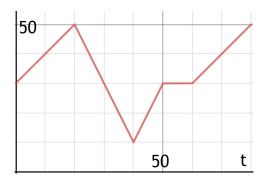
(1) Calculate the derivatives.

$$\frac{1}{3x^{3}+2} \qquad \qquad x\sqrt{4x^{2}-1} \\ \textbf{Answer:} \ -\frac{9x^{2}}{(3x^{3}+2)^{2}} \qquad \qquad \textbf{Answer:} \ \sqrt{4x^{2}-1} + \frac{4x^{2}}{\sqrt{4x^{2}-1}}$$

(2) The level of pollution in a lake is dependent on the population of humans by the lake. Let $P(H) = H^2$ equal the amount of human-created pollution, where H is the number of humans (in thousands). Regular census-taking yields the graph of y = H(t) shown. (t in years)



We would like to understand how the pollution levels change with time. (a) Calculate $\frac{dP}{dt}$ at t = 30.

Solution:
$$\frac{dP}{dt} = \frac{dP}{dH} \cdot \frac{dH}{dt} = 2H(30)H'(30) = 2(30)(-2) = -120$$

(b) Calculate $\frac{dP}{dt}$ at t = 10.

Solution:
$$\frac{dP}{dt} = 2H(10)H'(10) = 2(40)(1) = 80$$

(c) Calculate $\frac{dP}{dt}$ at t = 55.

Solution:
$$\frac{dP}{dt} = 2H(55)H'(55) = 2(30)(0) = 0$$

(3) A circular bacterial colony has radius r(t) and area A(t) (so that A(t) = π(r(t))²).
(a) Suppose that r(t) grows at a constant rate of 2. Calculate dA/dt when r = 5.

Solution: The following equation relates the radius and the area.

$$A = \pi r^2$$

If we take the derivative of both sides with respect to t, we get $A'(t) = 2\pi r(t)r'(t)$, or written another way,

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

We are told that $\frac{dr}{dt} = 2$ and r = 5. Then $\frac{dA}{dt} = 2\pi(5)(2) = 20\pi$.

(b) Suppose instead that A(t) grows at a constant rate of 20π . Calculate $\frac{dr}{dt}$ when r = 5.

Solution: We can use the same equation $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$. We are given that $\frac{dA}{dt} = 20\pi$ and r = 5, and we want to calculate $\frac{dr}{dt}$. Therefore, $20\pi = 2\pi (5) \frac{dr}{dt}$ which means $\frac{dr}{dt} = 2$.

- (4) (More optimization practice) An animal is deciding what proportion of its foodgathering time, x, it should allot between two different types of food (where $0 \le x \le 1$).
 - (a) Suppose there are two types of food, 1 and 2, and the nutrition gained from spending x portion of time on each is $F_1(x) = x^{1/2}$ and $F_2(x) = Nx$ for some positive constant N. What is the maximum amount of nutrition the animal can gain, and for what value of x does this happen? Your answer will depend on N.

Solution: If the animal spends x of its time on the first type of food, and 1-x on the second, then its total nutritional gain is $F(x) = x^{1/2} + N(1-x)$. Find the critical points:

$$F'(x) = \frac{1}{2\sqrt{x}} - N = 0 \implies \sqrt{x} = \frac{1}{2N} \implies x = \frac{1}{4N^2}$$

• If N < 1/2, then this critical points does not lie in the interval [0, 1]. We therefore can find the maximum by testing the endpoints:

$$F(0) = 0^{1/2} + N(1-0) = N$$
 $F(1) = 1^{1/2} + N(1-1) = 1$

and find that the maximum occurs at x = 1, because N < 1/2

• If $N \ge 1/2$, then the critical point above **does** lie in the interval [0, 1]. To determine if this is a maximum, we can either plug back into F(x), or calculate the second derivative. We will do the second option.

$$F'(x) = \frac{1}{2}x^{1/2} - N \implies F''(x) = -\frac{1}{4}x^{-3/2}$$

It is clear that $F''(\frac{1}{4N^2})$ will be negative, thus $x = \frac{1}{4N^2}$ is a **local** maximum. It follows that it is a global maximum.

(b) Same question, but for $F_1(x) = x^2$ and $F_2(x) = Nx$.

Solution: Now, $F(x) = x^2 + N(1 - x)$. Find the critical points:

$$F'(x) = 2x - N = 0 \implies x = N/2$$

• If N > 2, then the critical point does not lie in the interval [0, 1]. We can then plug in

$$F(0) = 0^{2} + N(1 - 0) = N$$
 $F(1) = 1^{2} + N(1 - 1) = 1$

and find that the maximum occurs at x = 0.

• If $N \leq 2$, then the critical point **does** lie in the interval [0, 1]. We'll use the second derivative test as before

$$F''(x) = 2 \implies F''(N) = 2$$

and so this critical point is a local minimum! So the global maximum still occurs at x = 0.